US007055073B2

a2 United States Patent

Walker et al.

(10) Patent No.: US 7,055,073 B2

(54)

(76)

")

@
(22)

(65)

(63)

(1)

(52)

CODING METHOD FOR CODING
PACKETIZED SERIAL DATA WITH LOW
OVERHEAD

Inventors: Richard C. Walker, 3500 Deer Creek
Rd., M/S 26U-4, Palo Alto, CA (US)
94304; Bharadwaj Amrutur, 3500
Deer Creek Rd., M/S 26U-4, Santa
Clara, CA (US) 94304; Richard W.
Dugan, 370 Trimble Ave., M/S 90UB,
San Jose, CA (US) 95131

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 32 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 10/814,442

Filed: Mar. 30, 2004

Prior Publication Data

US 2004/0228364 Al Nov. 18, 2004

Related U.S. Application Data

Continuation of application No. 09/522,782, filed on
Mar. 6, 2000, now Pat. No. 6,718,491.

Int. Cl1.
HO3M 13/47 (2006.01)
US.CL s 714/701; 341/58

START 202

rnscﬂvmocxs OF INPUT DATA |'~203

45) Date of Patent: *May 30, 2006
(58) Field of Classification Search 714/701;
341/58
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
5,022,051 A * 6/1991 Crandall et al. 375/292
5,438,621 A * 8/1995 Homak et al. 380/43
5,978,386 A * 11/1999 Hamalainen et al. 370/466
6,208,651 B1* 3/2001 Van Renesse et al. 370/392
6,317,433 B1* 11/2001 Galand et al. 370/395.2
6,389,036 B1* 5/2002 Stewart et al.
6,718,491 B1* 4/2004 Walker et al. 714/701

* cited by examiner

Primary Examiner—Stephen M. Baker

57 ABSTRACT

Blocks of input data are received. The input data comprises
packets of information words. The packets are preceded and
followed by control words. A master transition is appended
to the beginning of each block to form a respective frame for
transmission. The master transition has a sense that depends
on whether the block contains any control words. Addition-
ally, for each block that contains one or more control words,
a TYPE word indicating a structural property of the block is
generated, the block is condensed to accommodate the
TYPE word, and the TYPE word is inserted into the block.
The coding method provides a very low overhead (3.125%)
when implemented as a 64b/66b code.

22 Claims, 14 Drawing Sheets

BLOCK
EXCLUSIVELY INFORMATION
WORDS?

205

GENERATE TYPE WORD,
CONDENSE BLOCK & INSERT
TYPE WORD {FIG. 58)

206

SCRAMBLE BLOCK

212
SCRAMBLE BLOCK

3 23

PRECEDE SCRAMBLED BLOCK WITH
MASTER TRANSITION IN FIRST
SENSE TO FORM FRAME

PRECEDE SCRAMBLED BLOCK WITH
MASTER TRANSITION IN SECOND
SENSE, OPPOSITE TO FIRST SENSE

TO FORM FRAME

b

}

TRANSMIT FRAME

208

US 7,055,073 B2

Sheet 1 of 14

May 30, 2006

U.S. Patent

ozl 8¢
9¢ [¢ /
R A/ m
| £b |
| sy A
0V | | W\ | 4300030 |—<—| ¥3000N3 |-
7130 gg | 999/a¥9 [—=—» d0L/agx
wes | (. & = i
s/Ag oL~ | T GiNg T
% - |
. 4IO0ONT |+—— 4300030 |~
q99/ay9 |« —| qOL/a8xp
6 |
................... \ Nv\L
/
. ,
00l ze

VIAId
-/S2d

12"

IV

cl

U.S. Patent May 30, 2006 Sheet 2 of 14 US 7,055,073 B2

131 /130
LANE O KRKRKAKRIFEfJDDDDDDDDRKRKR

LANE 1 KRKRKAKRDDDDDDDDDRKRBRKR
LANE 2 KRKRKAKRDDDDDDDD|T/RKRKR

LANE 3 KRKRKAKRDODDDDDDD|IKIRKRKR

132
FIG.2
INFO CTRL 2 PACKET
ONLY ONLY STARTS
— — - —
LANE 0 DD Z12 [s]p z[s]
LANE 1 DD 22 DD ZD
LANE 2 DD zz2 DD ZD
LANE 3 DD zz DD ZD
BLOCK TYPE 1 2 3 4
FIG.3A FIG.3B FIG.3C

8 PACKET ENDINGS

IANEO {T|Z Dz Dz Dz D[T)] DD DD DD
LANEt ZzZ (TJz bz Dz DZ O[T DD DD
LANE2 2z2Z z2Zz [T}z Dz Dz D2z D[T] DD

LANE3 2zZ 2zz 2z [T|]z Dz DZ Dz D[T]
BLOCKTYPE 5 6 7 8 g 10 11 12

FIG.3D

U.S. Patent

May 30, 2006 Sheet 3 of 14

US 7,055,073 B2

2
BITS 64 BITS
151 152
FIG. 4A
01 8 INFORMATION WORDS (64 BITS)
FIG. 4B
157 158
L
1lo TYPE CONTROL, INFORMATION OR
8 BITS MIXED WORDS (56 BITS) |

152

FIG. 4C

U.S. Patent May 30, 2006 Sheet 4 of 14 US 7,055,073 B2

START 202

RECEIVE BLOCKS OF INPUT DATA 203

BLOCK 204
EXCLUSIVELY INFORMATION

GENERATE TYPE WORD,
CONDENSE BLOCK & INSERT
200 TYPE WORD {FIG. 58B)
h 4 l /—"21 2
SCRAMBLE BLOCK p—206 SCRAMBLE BLOCK
1 /'_'21 3
207 PRECEDE SCRAMBLED BLOCK WITH
PRECEDE SCRAMBLED BLOCK WITH MASTER TRANSITION IN SECOND
MASTER TRANSITION IN FIRST SENSE, OPPOSITE TO FIRST SENSE
SENSE TO FORM FRAME TO FORM FRAME

[1
B!

21
TRANSMIT FRAME [208 A
| NEXT BLOCK

7Y

209

ALL BLOCKS DONE?

210

FIG. 5A

U.S. Patent May 30, 2006

Sop

BLOCK?

CONTROL WORD IN

Sheet 5 of 14 US 7,055,073 B2

220
221

% 222

223 CONTROL WORD IN
BLOCK?
) ['232
l 224 975 [DETERMINE EOP
4 4 POSITION IN
GENERATE TYPE GENERATE TYPE BLOCK
WORD INDICATING WORD INDICATING 232 230
BLOCK TYPE 4 BLOCK TYPE 3 e v/
l l GENERATE TYPE GENERATE
WORD INDICATING TYPE WORD
ONE OF BLOCK TYPES INDICATING
205 5 THRU 12 BLOCK TYPE 2
226 233
4 ,
COMPRESS BLOCK BY REMOVING COMPRESS BLOCK BY REMOVING
SOP CONTROL WORD FROM BLOCK EOP CONTROL WORD FROM BLOCK
l A 4

|

COMPRESS BLOCK BY RE.CODING (227
CONTROL WORDS USING 7 BITS

y
INSERT TYPE WORD AT
HEAD OF BLOCK

/‘228

229

Yy
RETURN

FIG. 5B

U.S. Patent May 30, 2006

Sheet 6 of 14 US 7,055,073 B2
START 251
Y
RECEIVE QUAD OF INPUT DATA |~ —252
250
253
QUAD ALL INFO?
—— 255
EOP CTRL. WORD?
257 256
N SOP CTRL. WORD?
DETERMINE EOP POSITION
' 263
v 258 Y
ADD SOP CODE
ADD CODE FOR EOP PosITION| 252
253 A 4 264
y — ADD ALL-CTRL. A=
DUMP EOP CODE DUMP SOP
Y
ADD ALL-INFO CODE RE-CODE CONTROL _|—— 260
WORDS T0 7 BITS
//’J' 26]
\ﬂuum?
y
GENERATE TYPE WORD FROM 266 NEXT
QUAD-TYPE CODES OF THIS & 2657 | QUAD
PREVIOUS QUADS 7'y
»
267
PE1? 7274
2N
_— 268 =
TRANSFER QUADS INTO BLOCK, [
COMBINE QUADS INSERT TYPE WORD
y 269 v —02 | .
SCRAMBLE BLOCK SCRAMBLE BLOCK
v__—200 v_——1
ADD MT IN FIRST SENSE ADD MT IN 2ND SENSE

U.S. Patent

TYPE 1

TYPE 2

TYPE3

TYPE 4

TYPES

TYPE®

US 7,055,073 B2

May 30, 2006 Sheet 7 of 14
0 4 —160
1 5
2 6
3 7
0|1/ po:8 | D1:8 | D2:8 | D3:8 | D4:8 | D5:8 | D6:8 | D7:8
:151 \152
FIG. 7A
1E)))]]))
10| (ypey| 207 | 207 | 227 | 237 | z47 | 75:7 | 287 | 2737
FIG. 7B
1lo| .78 | p1s| D28 | D38 | Das | D58 | De:s | D78
(veg)| OV : : : : : :
FIG. 7C
157 _—158
164
33) .)) })]
10| vpgy| 207 | 207 | 22:7 | Z3:7 Ds:8 | D6:8 | D7:8
151 152
FIG. 7D
1l0| .37 z1:7 | 22:7 | 23:7 | z4:7 | z5:7 | 2627 | 2707
avep | <21 7 | 23:7 | za: : : :
FIG. 7E
1l0],.22 | pos 72:7 | 237 | z4:7 | 2527 | z8:7 | Z7:7
(rypE)| DO .7 | 23:7 | za: .7 | Z6: :

FIG. 7F

U.S. Patent May 30, 2006 Sheet 8 of 14 US 7,055,073 B2

TYPE7 (10 (T':,‘f;E) D0:8 | D1:8 Z3:7 | 24:7 | 25:7 | 26:7 | Z7:7

FIG. 7G

TYPEB |1|g (TEQE) po:8 | D1:8 | D2:8 74:7 | 75:7 | z6:7 | 277

FIG. 7H

TYPE9 |1l0!.CC | pos | D1:8 | D2:8 | D38 |X| 25:7 | Z6:7 | Z7:7

(TYPE)
FIG. 71

TYPE10 |1]/0|. D2 | po:s | D1:8 | D2:8 | D3:8 | Da:8 |X| z6:7 | 27:7

(TYPE)
FIG. 7J

TYPE11 |1|0|_.E' | po:s | D1:8 | D2:8 | D3:8 | Da:8 | D5:8 ||| 27:7

(TYPE)
FIG. 7K

TYPE12 |1|0| . FF | po:s | p1:8 | D2:8 | D3:8 | D4:8 | D5:8 | D6:8

(TYPE)
FIG. 7L

US 7,055,073 B2

Sheet 9 of 14

May 30, 2006

U.S. Patent

N39
agdom
AdAL

—w—\

‘N39 JdAL
"SNVHL
HIISVIN
::\ 1N 0ol
INVHS 319 yI1g c_,.__mmw
<—4— -INISSV > -INVHIS - avoT
JIAVY4 4ds | L1a-v9 4| v

mw—\

mw_.\

Nm—\

%0018

US 7,055,073 B2

Sheet 10 of 14

May 30, 2006

U.S. Patent

4318
“W3ISSY
JNVHd

80€ \

A

.TWmmE:d

9¢

] HO1VHYINID
90¢ QHOM 3dAL
9LE W[BRI T T ot
A A GlEd = Bl Y ey
" ZILE _
K 1}
gle, | wzg | LIE e i ole
vo,) |-wwHos| pg, | [HOLVE3NED | LA o \ | 3009
< S a3 ‘934 . —t—L -3dd
7 3ds ATIVHVd 34| avotavd | E'€ 30 LS
1g-+9 9) iy DLy
7 ' 7
Mg | J V.
| LiE oe LOE

LOE \

mom\

U.S. Patent

START

May 30, 2006

Sheet 11 of 14

n

RECEIVE FRAME

r—— 272

:

DESCRAMBLE SCRAMBLED PAYLOAD

—— 273

ASTER

TRANSITION IN FIRST

STAV

274

l 215

EXTRACT 7YPE WORD FROM
PAYLOAD FIELD

]
Q

EXPAND PAYLOAD FIELD USING
TYPE WORD (FIG. 9B)

|

|

280
A

ADOPT PAYLOAD AS BLOCK [—277

US 7,055,073 B2

OF RECEIVED DATA

NEXT FRAME

278

]

ALL FRAMES DONE?

279

FIG. 9A

U.S. Patent May 30, 2006 Sheet 12 of 14 US 7,055,073 B2

291

293

TYPE
ORD INDICATES CTRL WORL
PAYLOAD?

USE TYPE WORD TO IDENTIFY PAYLOAD FIELD

PORTION OCCUPIED BY CODED CONTROL WORDS
AND NUMBER OF CODED CONTROL WORDS

DECODE CODED CONTROL WORD(S)

296

TYPE
ORD INDICATES SOP/EQP |
PAYLOAD?

N
~J
~J

297
y il

IDENTIFY PAYLOAD POSITION OF START OR END
OF PACKET FROM TYPE WORD

l 298
Pl

INSERT SOP OR EOP CONTROL WORD AT PAYLOAD
POSITION IDENTIFIED BY TYPE WORD

FIG. 9B

US 7,055,073 B2

Sheet 13 of 14

May 30, 2006

U.S. Patent

x3018

re

A
HOL
wu3| ¥0L93130 | 344 | ovuig
3ININD3S
2019 adom
IdAL
oct
mm_\ 8_.\
'N39 431 N
%2019 P -INVHIS y
4 id -30 4dS
1g-v9

vm_\

Nm—\

4300330
JNVHd

JNVHS

"

:.w_.N

US 7,055,073 B2

Sheet 14 of 14

May 30, 2006

U.S. Patent

eV
savno e

gt

XN

TTA

0ge
£26 — 4300230 o)
QHOM 3dAL IN
yy3 L,
viE v f—¥EE [EEE
9EE~
\\
mme 8
79 | 3009 4300930 b9 | -INVHIS Pmm/ 4300930
-30 v anaid A -3 A1 INVH Lwﬁ i
9, 21s 721 | QVOAV | .o/ NETIVEVD 4q g N
7) 119-v9
LEE
¢NM\\

NNm\

_Nm\

owm\

US 7,055,073 B2

1

CODING METHOD FOR CODING
PACKETIZED SERIAL DATA WITH LOW
OVERHEAD

PRIOR APPLICATION

This application is a Continuation of U.S. patent appli-
cation Ser. No. 09/522,782 filed Mar. 6, 2000, now U.S. Pat.
No. 6,718,491, the entire disclosure of which is incorporated
herein by reference.

FIELD OF THE INVENTION

The invention relates to coding packetized data for serial
transmission, and, in particular, to coding packetized data
with an overhead sufficiently low to enable serial transmis-
sion through an Ethernet local area network with a bit rate
of 10 gigabits/second (Gb/s) using an OC192 SONET laser
operating at 10.3 Gb/s.

BACKGROUND OF THE INVENTION

For several decades now, integrated circuit and laser
technologies have doubled in performance approximately
every 18 months. These technologies have been used to
support a rapidly-growing demand for global communica-
tions capacity. This demand is currently growing much
faster than the underlying rate of improvement of the
supporting technologies. As an example, communication
traffic through the Internet has recently been doubling every
nine months. The demand for additional current bandwidth
is severely stressing the capabilities of current electronic and
optical technologies.

In particular, the Ethernet local area network standard has
progressively increased in speed by factors of ten, starting at
10 megabit per second (Mb/s) in 1982. Proposals for a 10
gigabit/second (Gb/s) Ethernet standard were made in 1999.
The most recently adopted Ethernet standard used a 8b/10b
line code described by A. X. Widmer and P. A. Franaszek in
A DC-Balanced, Partitioned-Block, 8b/10b Transmission
Code, 27 IBM 1. RES. AND DEV,, (1983 September) for
transmitting serial data at 1 Gb/s. In 8b/10b line code, each
eight-bit input word is represented by a ten-bit code that is
transmitted on the data link. In exchange for this 25%
overhead, 8b/10b coding provides DC balance, and a guar-
anteed transition density. The ten-bit code additionally has
the ability to represent an assortment of control words used
for signalling and framing.

Re-using 8b/10b coding for sending information at 10
Gb/s was considered in the proposed 10 Gb/s Ethernet
standard. However, using this technique would result in
having to transmit at a baud rate of 12.5 Gbaud, i.e., 12.5
Gb/s.

With currently-available laser fabrication technology,
manufacturing a laser capable of modulation at 12.5 Gb/s at
a modest price is considered to be quite difficult. However,
laser systems currently exist for use in systems conforming
to the OC-192 SONET telecommunications standard. Such
system operate at signalling rates of 9.95328 Gb/s. However,
these commercially-available lasers do not have enough
performance margin to run at more than 25% faster than
their design speed.

One way to enable the lasers designed for use in SONET
telecommunications systems to be used in the proposed 10
Gb/s Ethernet standard would be to design a simple and
robust coding scheme with a lower overhead than 8b/10b
line code. In principle, this goal can be achieved using a

20

25

30

35

40

45

50

55

60

65

2

block code in which words of M bits are represented by an
N-bit code and in which the ratio of N:M is less than 10:8.

A potential coding scheme having a lower overhead than
8b/10b line code is that used in the SONET telecommuni-
cations standard. The SONET coding scheme assures DC
balance by using a scrambling system, and has an overhead
of about 3%. However, the scrambling system used in the
SONET coding scheme uses two layers of polynomial
scrambling to achieve an adequate level of protection. This
two-layer scheme is complex to implement. Moreover, the
SONET coding scheme has a complex framing protocol that
is difficult to implement at low cost. The SONET coding
scheme would also have to be modified to add an extra level
of encoding to support Ethernet packet delimiting. Such an
extra level of coding would probably increase the overhead
of the SONET coding to 7% or more. In addition, it is
thought that the networking community would find the
wholesale adoption of a telecommunications standard to be
unpalatable. The performance and political difficulties just
described would make it difficult for a standard based on the
SONET coding scheme to be adopted as a new Ethernet
standard.

Another potential coding scheme having a lower overhead
than 8b/10b line code is that known as CIMT. This coding
scheme is described in U.S. Pat. No. 5,022,051 of Crandall
etal. and U.S. Pat. No. 5,438,621 of Hornak et al. The CIMT
code is an (M)b/(M+4)b code that can be configured have a
lower overhead than 8b/10b line code by making the value
of M sufficiently large. However, for large values of M, the
CIMT code is difficult to implement due to the need to
compute the DC balance of an incoming block of M bits, and
the need to compute a running DC balance of the transmitted
bits in real time.

Thus, what is required is a method and apparatus for
efficiently coding input data that has a lower overhead than
8b/10b line code and in which the integrated circuit die size
and power dissipation are minimized. The method and
apparatus should meet the performance requirements of the
new Ethernet standard with respect to DC-balance, run-
length control and error detection, and should support the
non-data, control words such as idle, start-of-packet, end-
of-packet, align and error that are required for Ethernet
packet delimiting.

SUMMARY OF THE INVENTION

The invention provides coding methods for coding pack-
etized serial data. In a first aspect, blocks of input data are
received. The input data comprises packets of information
words. The packets are preceded and followed by control
words. A master transition is appended to the beginning of
each block to form a respective frame for transmission. The
master transition has a sense that depends on whether the
block contains any control words. Additionally, for each
block that contains one or more control words, a TYPE word
indicating a structural property of the block is generated, the
block is condensed to accommodate the TYPE word, and the
TYPE word is inserted into the block.

The structural property represented by the TYPE word
includes the position of the start of the packet in the block,
the position of the end of the packet in the block, or the block
being composed exclusively of control words.

In a second aspect, 64-bit blocks of input data are
received. The input data comprises packets of information
words. The packets are preceded and followed by control
words. A 2-bit master transition is appended to the beginning
of each block to form a respective 66-bit frame for trans-

US 7,055,073 B2

3

mission. The master transition has a sense that depends on
whether the block contains any control words. Additionally,
for each block that contains one or more control words, an
8-bit TYPE word indicating a structural property of the
block is generated, condensing the block to 56 bits to
accommodate the TYPE word, and inserting the TYPE word
into the block.

The coding method according to the invention provides a
very low overhead when implemented as a 64b/66b code
(3.125%). The overhead is substantially lower than 8b/10b
(25%). This low overhead enables the coding method
according to the invention to transmit Ethernet data at a bit
rate of 10.0 Gb/s using existing lasers designed for use in
SONET OC-192 transmitters. Thus, adoption of a 10 Gb/s
Ethernet standard based on the coding method according to
the invention does not have to wait for lasers capable of
modulation at 12.5 Gbaud to be developed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing an example of a 10
Gb/s Ethernet interface including a coder that performs
embodiments of a coding method according to the invention.

FIG. 2 schematically shows exemplary quads of the input
data received by the coder shown in FIG. 1.

FIGS. 3A-3D show the twelve possible types of blocks
that can be received by the coder shown in FIG. 1.

FIGS. 4A—4C show the basic structure and the two kinds
of frame that the coder generates from a block of input data.

FIG. 5A is a flow chart showing a first embodiment of a
coding method according to the invention.

FIG. 5B is a flow chart showing an example of the
processing performed in process 205 of the method shown
in FIG. 5A.

FIG. 6 is a flow chart showing a second, quad-based
embodiment of a coding method according to the invention.

FIGS. 7A-7L show specific examples of the frames
generated from each of the twelve block types shown in
FIGS. 3A-3D, including the master transition and the TYPE
word, where used.

FIG. 8A is a block diagram showing an embodiment of a
coder that performs the first embodiment of the coding
method according to the invention.

FIG. 8B is a block diagram showing an embodiment of a
coder that performs the second, quad-based embodiment of
the coding method according to the invention.

FIG. 9A is a flow chart showing an example of a decoding
method for decoding the frames generated by the coding
method according to the invention.

FIG. 9B is a flow chart showing an example of the
processing performed in process 276 of the method shown
in FIG. 9A.

FIG. 10A is a block diagram showing a first embodiment
of a decoder for decoding the frames generated by the
coding method according to the invention.

FIG. 10B is a block diagram showing a second embodi-
ment of a decoder for decoding the frames generated by the
coding method according to the invention.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 is a block diagram showing an example of a 10
Gb/s Ethernet interface 10 including the physical medium
dependent module (PMD) 30 that includes the encoder 100
that performs an embodiment of a coding method according
to the invention. The interface 10 is composed of the

20

25

30

35

40

45

50

55

60

65

4

medium access controller (MAC) 12, the physical code
layer/physical medium attachment module (PCS/PMA) 14
and the PMD 30. The MAC sends data including user data
received from the host system (not shown) to the PCS/PMA
via the 37-conductor XGMII bus 16. The MAC additionally
receives data that include user data from the PCS/PMA via
the 37-conductor XGMII bus 17 for supply to the host
system.

The PCS/PMA 14 sends a coded serial bitstream, to be
described below, to the PMD 30 via the 4-lane XAUI bus 18
and receives a coded serial bitstream from the PMD via the
4-lane XAUI bus 19.

The physical medium dependent module (PMD) 30
includes the transmission path 20 and the reception path 22.
The transmission path 20 is composed of a serial arrange-
ment of the 4x8b/10b decoder 32, the encoder 100 and the
multiplexer 34. The input of the 4x8b/10b decoder is con-
nected to one output of the PCS/PMA 14 by the XAUI bus
18. The output of the 4x8b/10b decoder is connected to the
input of the encoder by the 37-conductor pseudo-XGMII bus
42.

The output of the encoder 100 is connected to the input of
the multiplexer 34 by the bus 44. In one embodiment, the
bus 44 is 66 conductors wide, but the encoder and the
multiplexer may be configured to use a bus that is substan-
tially narrower than this. The output of the multiplexer is a
serial bitstream that is fed to the Ethernet medium 40.

The reception path 22 is composed of a serial arrangement
of the demultiplexer 36, the decoder 120 and the 4x8b/10b
encoder 38. The demultiplexer receives a serial bitstream
from the Ethernet medium 40.

The output of the demultiplexer 36 is connected to the
input of the decoder 120 by the bus 45. In one embodiment,
the bus 45 is 66 conductors wide, but the demultiplexer and
the decoder may be configured to use a bus substantially
narrower than this. The output of the decoder is connected
to the input of the 4x8b/10b encoder by the 37-conductor
pseudo-XGMII bus 43. The output of the 4x8b/10b encoder
is connected to one input of the PCS/PMA 14 by the XAUI
bus 19.

In the Ethernet interface 10, the MAC 12 receives user
data from, and provides user data to, a host system (not
shown). The MAC takes any number of words of user data
between 64 and 1500, adds 22 words of address and other
data to the front of the user data and four words of a CRC-32
checksum to the end of the user data to form a packet. In this
disclosure, the contents of a packet will be called informa-
tion words.

The MAC additionally generates a Start of Packet (SOP)
control word S that it adds to the start of each packet to mark
the start of the packet. The MAC additionally generates an
End of Packet (EOP) control word T that it adds to the end
of each packet to mark the end of the packet. The MAC also
generates additional control words and inserts them between
consecutive packets to generate a continuous stream of
words for transmission to the PCS/PMA 14. The continuous
stream is required to maintain receiver phase alignment. The
additional control words include Idle_even_not_busy K,
Idle_even_busy Kb, Idle_odd_not_busy R, Idle_odd_busy
Rb, Align A and Error E. This disclosure uses the letter Z as
a generic term to indicate any one of the control words.

The MAC 12 feeds the continuous stream of words to the
PCS/PMA 14 via the XGMII bus 16. Of the 37 conductors
in each of the XGMII buses 16 and 17, 32 are allocated to
four, parallel, eight-bit words; four are allocated to control
word flags, each of which indicates whether a respective one
of the four words is an information word or a control word;

US 7,055,073 B2

5

and one is allocated to a clock signal. A set of four eight-bit
words transported in parallel by the XGMII busses 16 and 17
and by the pseudo-XGMII busses 42 and 43 will be referred
to as a quad.

In addition, the MAC 12 receives from the PCS/PMA 14
via the XGMII bus 17 a continuous stream of quads. The
quads are composed of information words arranged in
packets and code words interspersed between consecutive
packets, as just described. The start and end of each packet
are marked with an SOP and an EOP control word, respec-
tively. The MAC extracts the packet of information words
from the stream of quads received from the PCS/PMA using
the control word flags received in parallel with the quads to
indicate the information words. The MAC also checks the
validity of each packet using the CRC-32 checksum that
constitutes the last four words of the packet. The MAC then
extracts the user data from the packet, and forwards the user
data to the host system (not shown).

The PCS/PMA 14 receives the continuous stream of
quads from the MAC 12. The MAC and the PCS/PMA are
elements of conventional Ethernet system. Consequently,
the PCS/PMA module applies 8b/10b line code to each word
in the quads received from the MAC. Each word is coded in
response to its respective control word flag so that informa-
tion words and control words having the same eight-bit code
are represented by different ten-bit codes. The PCS/PMA
also serializes the 10-bit line code words and feeds them to
the input of the PMD 30 via the XAUI bus 18. The XAUI
bus is standardized for 10 Gb/s Ethernet and is composed of
four parallel conductors, called lanes, each of which carries
serial 10-bit line code words at a bit rate 0of 3.125 Gb/s. Thus,
the four conductors constituting the XAUI bus collectively
transfer the serial 10-bit line code words to the PMD 30 at
an effective bit rate of 12.5 Gb/s.

The XAUI busses 18 and 19 use four parallel conductors
to achieve a total bit rate of 12.5 Gb/s because 3.125 Gb/s
represents the fastest rate at which data can be reliably
transmitted over the conductors of a printed circuit board
using present-day technology.

The PCS/PMA 14 also receives four serial bitstreams
from the PMD 30 via the XAUI bus 19. The PCS/PMA
parallelizes the bitstreams, decodes the 8b/10b coding of the
10-bit line code words constituting the bitstream, and feeds
the resulting continuous stream of quads composed of
information words and control words to the MAC 12 via the
XGMII bus 17. The PCS/PMA additionally feeds a control
word flag for each of the words constituting the quads to the
MAC via the XGMII bus.

In the transmission path 20 of the PMD 30, the 4x8b/10b
decoder 32 is connected to the XAUI bus 18 to receive
incoming serial 10-bit line code words at a bit rate of
4x3.125 Gb/s. The 4x8b/10b decoder decodes the 8b/10b
coding of the 10-bit line code words to recover respective
8-bit words, and generates, for each word, a word type bit
that indicates whether the word is an information word or a
control word. The 4x8b/10b decoder feeds quads of the 8-bit
words and their respective control word flags to the encoder
100 via the pseudo-XGMII bus 42. The pseudo-XGMII bus
has the same structure as the XGMII bus 16, but is called
pseudo-XGMII in this disclosure to indicate that this bus
does not form part of the proposed 10 Gb/s Ethernet stan-
dard. The pseudo-XGMII bus is composed of 37 conductors.
Thirty-two of the conductors are allocated to the quads, four
of the conductors are allocated to the control word flags for
the quads, and one conductor is allocated to a clock signal.

It might appear that a substantial simplification could be
achieve by omitting the PCS/PMA 14, the XAUI busses 18

20

25

30

35

40

45

50

55

60

65

6

and 19, the 4x8b/10b decoder 32 the 4x8b/10b encoder 38
and the pseudo-XGMII busses 42 and 42, and simply
connecting the encoder 100 and the decoder 120 to the MAC
12 via the XGMII busses 16 and 17. However, the PCS/
PMA imposes the rule, described below, that the start-of-
packet (SOP) control word can appear only in lane 0 of the
XAUI bus, and, hence of the pseudo-XGMII bus. Without
this rule, the number of block types would exceed the
number that can be represented by a set of eight-bit TYPE
words having a mutual Hamming distance of four bits.
Moreover, the maximum transmission distance of current
embodiments of the XGMII bus is of the order of 100 mm,
whereas that of the XAUI bus is of the order of 1 m. Thus,
the above-described simplification can be made, but only if
the MAC 12 is re-configured to locate the SOP control word
exclusively on the lane of the XGMII bus equivalent to lane
0 of the XAUI bus, and the length of the XGMII bus is less
than the maximum transmission distance of such bus.

The encoder 100 receives the quads from the pseudo-
XGMII bus 42 as input data, encodes consecutive pairs of
the quads to generate respective 66-bit packets, as will be
described in more detail below, and feeds the packets to the
multiplexer 34 via the bus 44.

The multiplexer receives the 66-bit packets, serializes
them and transmits them to the Ethernet medium 40 at a bit
rate of 10 Gb/s. Typical transmission ranges are 5 m using
RG-174 coaxial cable, 10 m using 5 mm coaxial cable and
40 km using optical fibers.

In the reception path 22 of the PMD 30, the demultiplexer
separates the serial data received at a bit rate of 10 Gb/s from
the Ethernet medium 40 into 66-bit packets, and feeds the
packets to the decoder 120 via the bus 45. The decoder
decodes the 66-bit packets to generate two consecutive
quads of eight-bit words and a control word flag for each
word. The decoder transfers the quads and their respective
control word flags in parallel to the 4x8b/10b encoder 38 via
the pseudo-XGMII bus 43.

The 4x8b/10b encoder 38 applies 8b/10b encoding to the
quads received via the pseudo-XGMII bus 43, operating in
response to the control word flag for each word constituting
the quads. The 4x8b/10b encoder transfers the resulting
10-bit line code words via the XAUI bus 19 to the PCS/PMA
module 14 at a bit rate of 12.5 Gb/s. The 10-bit line code
words are processed by the PCS/PMA and the MAC 12 to
provide the received user data to the host system (not
shown), as described above.

The 64b/66b coding applied by the encoder 100 will now
be described with reference to FIGS. 2, 3A-3D and 4A-4C.

FIG. 2 schematically shows exemplary quads of the input
data received by the encoder 100 via the four lanes of the
pseudo-XGMII bus 42. The input data include the exem-
plary packet 130 composed of information words D. To
simplify the drawing, the number of information words in
the packet 130 is substantially fewer than the minimum
number of information words in a standard Ethernet packet.

Prior to the start of the packet 130, the encoder 100
receives control words on all four input lanes of the pseudo-
XGMII bus 42. The control words in the four lanes alternate
between K and R. A set of alignment characters A that can
be used to synchronize the lanes is also shown. The start of
the packet 130 is indicated by the SOP control word S,
shown at 131. The SOP control word always appears in lane
0 and never appears in any other lane. If the SOP control
word appears in a lane other than lane 0, this indicates an
error and the packet is filled with error codes E.

The information words D constituting the packet 130 are
then consecutively received, followed by the EOP control

US 7,055,073 B2

7

word T, shown at 132. The EOP control word can appear in
any of the lanes of the pseudo-XGMII bus 42. The lane in
which the EOP control word appears depends on the number
of information words in the packet. The packet can be
composed of any number of information words between 64
and 1500. The minimum number of control words between
consecutive packets is 12. Following the EOP control word
131, the encoder 100 receives control words that alternate
between K and R via all four lanes of the pseudo-XGMII
bus. The control words continue until the SOP control word
(not shown) indicating the start of the next packet.

The encoder 100 applies 64b/66b encoding to blocks
composed of two quads of the input data consecutively
received from the pseudo-XGMII bus 42, i.e., the 64b/66b
coding is applied to a total of 64 received bits. Thus, the
64b/66b coding uses 66 bits to represent the 64 received bits.
The 64b/66b coding adds a master transition composed of
two bits to the start of the block to form a frame. The master
transition serves both as a reference for frame synchroniza-
tion and as a flag that indicates when the frame is composed
exclusively of information words. The 64b/66b coding has a
coding efficiency of 64/66, or an overhead of 3.125%. The
64b/66b coding results in a transmitted bit rate that is within
4% of the specified bit rate of existing lasers designed for
use in SONET transmitters. The inventors believe that this
transmitted bit rate is within the normal manufacturing
performance window for such existing lasers.

Since each word received from the pseudo-XGMII bus 42
can be either a control word or an information word, as
indicated by the word’s respective control word flag, also
received from the pseudo-XGMII bus, a fully-general code
would need to transmit the control word flag for each word
to tell the receiver what type of word is being received. The
maximum efficiency of such a code would be 8/9, ora 12.5%
overhead. The 64b/66b coding achieves a substantially
lower overhead than this by taking advantage of features of
the XAUI interface and the Ethernet packet structure that
reduce the number of possible ways in which information
words and control words can be arranged in the input data.

First, each packet of information words received by the
encoder 100 is composed of at least 64 words, always starts
with the SOP control word S and always ends with the EOP
control word T, and consecutive packets are separated by at
least 12 control words. This means that when blocks of eight
words (64 bits) of the input data are coded, each block can
contain information words exclusively, control words exclu-
sively, a single transition from control words to information
words or a single transition from information words to
control words. As noted above, the master transition that
constitutes the first two bits of the frame operates as a flag
to indicate when the frame is composed exclusively of
information words. This means that, instead of including
eight control word flags in each frame to indicate whether
the eight words constituting the frame are each an informa-
tion word or a control word, this number of bits can be used
to represent a TYPE word that is included in all frames that
are not composed exclusively of information words. Differ-
ent values of the TYPE word indicate one of the following
structural properties of the block: 1) whether the block from
which the frame is derived is composed exclusively of
control words, 2) the position of the start of a packet in the
block from which the frame was derived and 3) the position
of'the end of a packet in the block from which the frame was
derived. Since the number of states represented by the
eight-bit TYPE word is relatively small, TYPE words hav-
ing a large mutual Hamming distance can be chosen. For

20

25

30

35

40

45

50

55

60

65

8

example, the TYPE words can be chosen so that more than
three bit errors are required to convert one TYPE word to
another.

Second, as noted above, XAUI semantics guarantee that
the SOP control word S appears in lane 0 exclusively. This
reduces the number of ways in which the packet start can
appear in the frame to two, which further reduces the total
number of ways in which the start of the packet or the end
of the packet can appear in the frame.

Third, the set of control words is sufficiently small (K, Kb,
R,Rb,S, T, A, E, ...)to allow the control words to be coded
using fewer than eight bits, and to be coded by a set of codes
having a large mutual Hamming distance. The bits saved by
coding the control words using fewer than eight bits can then
be used to condense the block to enable the frame to
accommodate the above-described TYPE word. The codes
are chosen to enable the control word coding to be highly
resistant to bit errors.

FIGS. 3A-3D show the twelve possible types of blocks
that the encoder 100 can receive from the pseudo-XGMII
bus 42. FIG. 3A shows a block generated from two con-
secutive quads located in the middle of the packet, where
both quads consist exclusively of information words. The
block composed of two consecutive quads of exclusively
information words is called a Type 1 block.

FIG. 3B shows the one block Type that includes two
consecutive quads located in the middle of the gap between
two consecutive packets, where both quads consist exclu-
sively of control words. The block composed of two con-
secutive quads of exclusively information words is called a
Type 2 block.

FIG. 3C shows the two different block Types in which the
start of the packet appears. The start of the packet is
indicated by SOP control word S. Because the SOP control
word can only appear in lane 0 of the pseudo-XGMII bus,
the SOP control word can appear in only two possible
locations in the block. The block in which the SOP control
word appears in the even-numbered quad is called a Type 3
block, and that in which the SOP control word appears in the
odd-numbered quad is called a Type 4 block.

FIG. 3D shows the eight different block Types in which
the end of the packet appears. The end of the packet is
indicated by the EOP control word T. Because the EOP
control word can appear in any one of the four lanes of the
pseudo-XGMII bus, the EOP control word can appear in any
location in the block. The blocks in which the EOP control
word appears as word 1 through 8 of the block (see FIG. 7A)
are called Type 5 through Type 12 blocks, respectively.

The 12 different types of blocks are indicated by a code
that uses a combination of the master transition and the
TYPE word. The 12 types of blocks are divided into two
different categories, namely, blocks composed exclusively
of information words, i.e., the Type 1 block shown in FIG.
3 A, and blocks that include at least one control word, i.e., the
Type 2-12 blocks shown in FIGS. 3B-3D.

FIG. 4A shows the basic structure of the frame 150 that
the encoder 100 generates from a block of input data. The
frame is composed of the two-bit sync. field 151 followed by
the 64-bit payload field 152. The sync. field accommodates
the two-bit master transition. The words accommodated by
the payload field are scrambled with a long-period, self-
synchronous scrambler to maintain the statistical DC bal-
ance of the transmitted bitstream, as will be described in
more detail below.

The encoder 100 generates two different kinds of frame
having the basic structure shown in FIG. 4A, but differing in
the structure of their payload fields. The structure of the

US 7,055,073 B2

9

payload field depends on whether or not the block from
which the frame is generated is a Type 1 block composed
exclusively of information words. The structure of the
payload field is indicated by the master transition stored in
the sync. field. FIG. 4B shows the structure of the frame 153
generated when the block is a Type 1 block. In this, the
master transition in the sync field 151 is 01, and the payload
field 152 is composed of the eight information words
constituting the block, i.e., 64 bits.

FIG. 4C shows the structure of the frame 156 generated
when the block is a Type 2 through Type 12 block that
includes at least one control word. In this, the master
transition in the sync. field 151 is 10, and the payload field
152 is composed of the 8-bit sub-field 157 and the 56-bit
sub-field 158. The eight-bit sub-field 157 is occupied by the
TYPE word and the 56-bit sub-field 158 is occupied by a
condensed version of the block. In particular, all information
words included in the block are included unchanged in the
sub-field 158. The 56-bit sub-field 158 can accommodate up
to seven information words, the maximum number of infor-
mation words in a block that includes at least one control
word. Moreover, the control words S and T, if they appear
in the block, are discarded and are not transferred to the
sub-field 158. Finally, all remaining control words in the
block are re-coded using fewer than eight bits and the
re-coded control words are included in the sub-field 158. In
the preferred embodiment, the remaining control words are
re-coded using seven-bit codes chosen to have a mutual
Hamming distance of four bits.

The control words S and T can be omitted from the
sub-field 158 because position of the start of the packet or
the end of the packet in the frame is indicated by the TYPE
word included in the sub-field 157. Omitting the control
words S and T allows the payload field 158 to accommodate
the TYPE word and all seven information words in full when
the block is composed of seven information words and either
the SOP control word S or the EOP control word T, as in the
Type 3 block shown in FIG. 3C and the Type 12 block shown
in FIG. 3D. Re-coding the remaining control words as 7-bit
words enables the payload field 158 to accommodate the
TYPE word and all eight control words when the block is
composed exclusively of control words, as in the Type 2
block shown in FIG. 3B. All other combinations of infor-
mation words and control words are composed of fewer than
56 bits after the S and T control words have been removed
and the remaining control words have been re-coded using
fewer bits.

FIG. 5A is a flow chart showing a first embodiment 200
of'a method according to the invention for applying 64b/66b
coding to input data that include a packet of information
data. The processing performed in process 205 of the
method will be described in more detail below with refer-
ence to FIG. 5B.

The method starts at process 202. In process 203, blocks
of the input data are received. The input data include the
above-mentioned control words in addition to the packet of
information words. The control words precede and follow
the packet of information words. The blocks are smaller than
the packet. In the preferred embodiment, each block is
composed of two successive quads of four parallel words
received from the pseudo-XGMII bus 42.

In process 204, a test is performed on a block of the input
data to determine whether the block is composed exclusively
of information words. In the preferred embodiment, this test
can be performed simply by examining the control word
flags for the eight words that constitute the block. The
control word flags are received together with the words that

—

0

20

25

30

35

40

45

50

55

60

65

10
constitute the block via the pseudo-XGMII bus 42. Alter-
natively, the test can be performed by testing the quads as
they are received, and deriving the test result for the block
from the test results for the quads that constitute the block,
as will be described in more detail below with reference to
FIG. 6.

When the test result is NO, execution advances to process
205, which will be described below. When the test result is
YES, execution advances to process 206, where the block is
scrambled.

Execution then advances to process 207, where a frame is
formed by preceding the scrambled block with a master
transition in the first sense. In the preferred embodiment, the
master transition in the first sense is provided by the two bits
01.

Execution then advances to process 208, where the frame
is transmitted, and to process 209, where a test is performed
to determine whether all the blocks of the input data have
been processed. When the test result is YES, execution
advance to process 210, where it ends. When the test result
is NO, execution returns to process 204 via process 211 so
that the next block can be processed.

When the test result in process 204 is NO, this indicates
that the block includes at least one control word. Execution
advances to process 205, where a TYPE word that identifies
the structural properties of the block is generated, the block
is condensed and the TYPE word is inserted into the block.
The TYPE word indicates one of the following structural
properties of the block: 1) whether the block is composed
exclusively of control words, 2) the position in the block of
the start of the frame and 3) the position of the end of the
frame the block. Block Types are described in detail above
with reference to FIGS. 3A-3D. The processing performed
in process 205 will be described in more detail below with
reference to FIG. 5B.

Execution then advances to process 212 where the block
is scrambled.

Execution then advances to process 213, where a frame is
formed by preceding the scrambled block with a master
transition in a second sense, opposite to the first sense. In the
preferred embodiment, the master transition in the second
sense is provided by the two bits 10.

Execution then advances to process 208, where the frame
is transmitted, as described above.

The block is described above as being subject to scram-
bling in processes 207 and 213. In general-purpose data
transportation applications, the block has to be scrambled to
ensure that the receiver can synchronize to the master
transitions, and decode the packets. However, in data trans-
portation applications in which random data are transported,
the scrambling processes 207 and 213 can be omitted.
Examples of random data include digital audio signals and
compressed data.

FIG. 5B shows an example of the processing performed
in process 205. In this process, the block is condensed and
a TYPE word indicating the structural properties of the
block is inserted into the block. The structure includes the
position of the start or the end of the packet in the block, and
whether the block is composed exclusively of control words.

Execution starts in process 220. In process 221, a test is
performed to determine whether the block includes the SOP
control word S that indicates that the packet starts in the
block. When the test result is NO, execution advances to
process 222, which will be described below. When the test
result is YES, execution advances to process 223, where a
test is performed to determine whether the SOP control word

US 7,055,073 B2

11

appears in the first quad constituting the block. Each block
processed by the encoder 100 is composed of two consecu-
tively-received quads.

When the test result generated by process 223 is NO,
execution advances to process 224, where a TYPE word
indicating that the block is a Type 4 block is generated. A
Type 4 block is one in which the SOP control word appears
in the second quad. Block types are described in detail above
with reference to FIGS. 3A-3D. Execution then advances to
process 226, which will be described below. When the test
result generated in process 223 is YES, execution advances
to process 225, where a TYPE word indicating that the block
is a Type 3 block is generated. A Type 3 block is one in
which the SOP control word appears in the first quad.

Execution advances from process 224 or process 225 to
process 226, where the block is condensed by removing the
SOP control word from the block. Condensing the block
creates space in the block for the TYPE word generated in
process 224 or process 225 to be inserted into the block in
process 228, to be described below.

Execution then advances to process 227, where the block
is condensed by re-coding any control words in the block
using fewer bits. If either process 226 or process 233 has
previously been executed, the effect of executing process
227 is to compress the block further. Process 233 will be
described below. The purpose of condensing the block is
described above. In the preferred embodiment, the 8-bit
control words are re-coded using fewer bits. The set of
control words is sufficiently small to allow the control words
to be coded using 7-bit codes chosen to have a mutual
Hamming distance of four bits. The re-coding process can
refer to the TYPE word for the block to find the locations of
the control words in the block.

Execution then advances to process 228, where the TYPE
word is inserted at the head of the block. Space to accom-
modate the TYPE word has been created in the block by
executing one or more of processes 226, 227 and 233.
Process 233 is described below.

Execution then advances to process 229, whence it returns
to the main routine.

When the test result in process 221 is NO, execution
advances to process 222, where a test is performed to
determine whether the block includes the EOP control word
T that indicates that the end of the packet appears in the
block. When the test result is NO, execution advances to
process 230, which will be described below. When the test
result is YES, execution advances to process 231, where the
position of the EOP control word in the block is determined.
As shown in FIG. 3D, any of the eight words in the block can
be the EOP control word.

Execution then advances to process 232, where a TYPE
word is generated in accordance with the position of the
EOP control word in the block. The TYPE word indicates
that the block is one of a Type 5 through Type 12 block. Type
5 through Type 12 blocks are blocks in which the EOP
control word appears in one of the eight word positions in
the block, as described above with reference to FIG. 3D.

Execution then advances to process 233, where the block
is condensed by removing the EOP control word from the
block. The purpose of condensing the block is described
above.

Execution then advances to process 227, where the block
is further condensed by re-coding any control words remain-
ing in the block are re-coded using fewer bits, as described
above.

A test result of NO in process 222 indicates that the block
is composed exclusively of control words. In this case,

20

25

30

35

40

45

50

55

60

65

12

execution advances to process 230 where a TYPE word
indicating that the block is a Type 2 block is generated. A
Type 2 block is a block composed exclusively of control
words.

Execution then advances to process 227, where the block
is condensed by re-coding the control words included in the
block using fewer bits, as described above. In this case, all
eight words in the block are control words and are re-coded.

Note that in the above processing, such information words
as are included in the block remain unchanged.

FIG. 6 is a flow chart showing a second embodiment 250
of a coding method according to the invention for applying
64b/66b coding to input data that include a packet of
information data. This embodiment is quad-based rather
than block-based. The method starts at process 251. In
process 252, a quad of input data is received from the
pseudo-XGMII bus 42 shown in FIG. 1. A control word flag
for each word in the quad is also preferably additionally
received.

In process 253, a test is performed to determine whether
the quad is composed exclusively of information words.
This test can be performed simply by examining the control
word flags of the quad. When the test result is YES,
execution advances to process 254, where a quad-type code
indicating that the quad is composed exclusively of infor-
mation words is appended to the quad. Execution then
advances to process 261, which will be described below.
When the test result is NO, execution advances to process
255.

In process 255, a test is performed to determine whether
any of the control words in the quad is the end-of-packet
(EOP) control word. When the test result is NO, execution
advances to process 256, which will be described below.
When the test result is YES, execution advances to process
257, where the position of the EOP control word in the quad
is determined, and to process 258, where a quad-type code
is appended to the quad. The quad-type code indicates the
position of the EOP control word in the quad In process 259,
the EOP control word is removed from the quad. This has the
effect of condensing the block of which the quad is a
constituent.

In process 260, any other control words in the quad are
re-coded using fewer bits, as described above. This has the
effect of further condensing the block of which the quad is
a constituent. Execution then advances to process 261,
which will be described below.

When the test result in process 255 is NO, execution
advances to process 256 where a test is performed to
determine whether any of the control words in the quad is
the start of packet (SOP) control word. When the test result
is NO, execution advances to process 262, where a quad-
type code indicating that the quad is composed exclusively
of control words is appended to the quad. Execution then
advances to process 260, described above, where the control
words are re-coded, and then to process 261, to be described
below.

When the test result in process 256 is YES, execution
advances to process 263, where a quad-type code indicating
that the SOP control appears in lane 0 of the quad is
appended to the quad.

In process 264, the SOP control word is removed from the
quad. This has the effect of condensing the block of which
the quad is a constituent.

Execution then advances to process 260, described above,
where the control words are re-coded, and then to process
261, to be described next.

